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1. Introduction

Plasmas are comprised of a medium of charged particles, ions, and electrons and are 
one of the most common forms of matter in the universe.  Although plasmas generally 
exist in stars and clouds in space, they can be created by heating or applying a strong 
electromagnetic field to a neutral gas.  High heat or pressure can strip electrons from 
atoms, creating positively charged ions and free electrons in an electrically-conducting 
medium, such as a plasma.

Of current interest is the formation and behavior of plasmas created by hypersonic 
vehicles passing through the atmosphere.  These vehicles leave behind a plasma trail 
which can interfere with electromagnetic signals due to the conducting nature of the 
material.  This presents interesting challenges both for radar detection of these vehicles 
and for radio communication and guidance through the plasma layer.

This paper discusses the finite-difference, time-domain (FDTD) method to simulate 
the behavior of plasma materials.  There has been extensive work in this area in the 
past using FDTD, but most relevant to this application are approaches developed by 
Luebbers et. al. for the simulation of frequency-dependent materials in general [1], 
and plasmas specifically [2].  Further work on higher order dispersive materials [3] and 
magnetized plasma [4] further validated the approach.  The technique was applied to 
three-dimensional, full-wave scattering from frequency-dependent materials in the 1993 
Schelkunoff Best Paper Award publication in the IEEE Transactions on Antennas and 
Propagation [5].  These developments and future refinements are incorporated into 
Remcom’s XFdtd® 3D Electromagnetic Simulation solver, which will be used to provide 
some of the results in this paper.

The simulation of plasmas will be discussed here starting with an explanation of the 
frequency-dependent model used, followed by validation of the method in one- and 
three-dimensions.  In three dimensions, both monostatic and bistatic radar cross section 
results will be presented for validation.

2. The Debye-Drude Material Model Applied to Lossy Plasmas

The Debye-Drude material model describes a frequency varying relative permittivity 
function that includes loss and is a good fit for the complex permittivity of a lossy 
plasma.  The Debye-Drude equation with one first order pole is
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where ε∞ is the infinite frequency relative permittivity, εs is the static frequency relative 
permittivity, τ0 is the relaxation time (in seconds), and σ is the electrical conductivity 
(Siemens/meter).

In comparison, the well-known frequency dependent relative complex dielectric constant 
for plasma is

where ωp is the plasma frequency (Radians), and ƒc is the collision frequency of the 
plasma (Hertz).  This expression can be rearranged to put it in the same form as the 
Debye-Drude equation as

Comparing the two expressions results in the following equations:

The conductivity term is then

Consider the plasma discussed in [5] which had parameters of Plasma Frequency 
= 28.7 GHz, Collision Frequency = 20 GHz, the Debye-Drude parameters would be 
Infinite Frequency relative permittivity = 1, Static Frequency relative permittivity = 
-80.295, relaxation time = 5x10-11 sec, and conductivity = 14.397 S/m.  The complex 
permittivity of this model may be plotted as real and imaginary parts shown in Figure 1.  
This plasma model and parameters will be used for future examples in this paper.
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3. Validations for One-Dimensional Cases
 
The plasma model developed for use in XFdtd in the previous section will be validated 
for a series of one-dimensional cases by comparison to analytical solutions.

3.1 Normal Incidence on Plasma Half-Space 

First, consider a plasma half-space with normal incidence scattering as shown in Figure 
2.  This interface is illuminated by a normal incident (to the interface) perpendicularly 
polarized plane wave traveling in the +z direction.  The incident electric field, Ey, is 
parallel to the interface or perpendicular to the plane shown in Figure 2.  If the following 
conditions hold true

Figure 1:  Real and Imaginary parts of the permittivity of the 
example plasma material defined in [5].

Figure 2:  One dimensional geometry of plasma half-space 
with incident, reflected, and transmitted fields shown.
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then the reflection and transmission coefficients reduce to

At the air-plasma interface (z =0) the incident and reflected electric fields are

Therefore, the ratio of the reflected and incident fields is

This value is often described in decibels as the return loss by taking the logarithm of the 
ratio

The transmission (as referenced to the incident field) into the plasma at a specific 
distance from the interface can be found similarly with a ratio of the incident and 
transmitted fields.
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The incident field (at the air-plasma interface, i.e. z = 0) and the transmitted field into the 
plasma (at some distance, z) are

Therefore, the ratio of the transmitted and incident fields is

At z = 0.1 m

The following equation is the expression of field transmission in dB into the plasma at a 
distance of 0.1 m

This one-dimensional propagation case was replicated in XFdtd by creating a 
rectangular block of the plasma material with periodic boundaries on the (+/-) x and 
y directions and an absorbing boundary on the +z side.  The plasma material is 
defined using the Debye-Drude description mentioned previously from [5].  A plane 
wave excitation with a broadband pulse is applied from the -z direction.  The resulting 
reflection coefficient and transmission at a point 0.1 meters into the plasma are plotted 
in Figure 3 where the analytical solution is compared to those from XFdtd for the 
reflection.  For the transmission, it can be seen that below -120 dB the computational 
solution is limited by the very low signal level and numerical noise.
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3.2 Normal Incidence on Plasma of Finite Thickness

In this section, consider the reflection and transmission of a plane wave which is 
normally incident on a sheet of plasma of finite thickness such as shown in Figure 4.  
The analytic formulation employs the wave-transmission (wave-chain) matrix approach 
as outlined in Field Theory of Guided Waves by R. E. Collin [6].  This approach assumes 
only forward and backward TEM traveling waves and that the sections between the 
discontinuities (dielectric interfaces) are sufficiently long so that there is no interaction 
between evanescent waves generated at one interface and the adjacent interfaces.

Figure 3:  Reflection and Transmission at 0.1 m distance from the plasma half-space 
interface of Figure2, computed analytically and simulated with XFdtd.

Figure 4:  One Dimensional geometry of finite 
thickness plasma in free space with incident, 
reflected, and transmitted fields.
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At each interface there exists a reflection and transmission coefficient as shown in 
Figure 5.  Each interface has forward and backward propagating signals which are 
detailed in Figure 6.  The signals a1 and b1 at the left of the first interface may be 
described by the following expressions.

The total or combined reflection coefficient for net impact of interactions with both 
interfaces of the plasma layer at the first air-plasma interface (Z=0 in Figure 4) can be 
found using the above matrix equation and written as the ratio of the forward traveling 
wave, a1 to the reflected wave, b1.

Likewise for the transmission coefficient relating the incident right traveling wave to the 
right traveling wave in the free space region on the back side of the plasma sheet, the 
ratio of a3 to a1 may be written as

Figure 5:  Diagram of the Equivalent Circuit for Plane 
Wave Scattering from a sheet of dielectric (thickness d) 
depicting the associated reflection and transmission 
coefficients.

Figure 6:  Diagram of the equivalent circuit for plane 
wave scattering from a sheet of dielectric (thickness d) 
depicting the traveling waves in each region.

Technical Report: Simulation of Plasma Materials in XFdtd



315 S. Allen St., Suite 416  |  State College, PA 16801 USA  |  +1.814.861.1299 phone  |    +1.814.861.1308 fax  |  sales@remcom.com  |  www.remcom.com

Using the same plasma material from the half-space validation, the reflection and transmission 
coefficients are computed analytically and simulated in XFdtd and are shown in Figure 7 for a 
case where the plasma layer is 1 mm thick.  Very good agreement between the XFdtd method 
and the analytical solutions is found.

3.3 Normal Incidence on a Finite Thickness Plasma Sheet over PEC Half-Space

As the next one-dimensional validation, consider a thin layer of plasma material backed by a 
perfectly-conducting (PEC) half-space as shown in Figure 8.  Here there will be an incident field 
from the -Z direction, a transmitted field into the plasma layer, a reflected field from the free 
space-plasma interface, and a second reflected field from the plasma-PEC interface.

Figure 7:  The reflection and transmission coefficients for a 1 mm 
thick plasma layer computed analytically and with XFdtd.

Figure 8:  One-dimensional geometry of a thin plasma 
layer backed by a conducting half-space with incident 
and reflected fields shown.

Figure 9:  Interactions with the two material interfaces are 
shown with definitions of the various coefficients and signals.

Technical Report: Simulation of Plasma Materials in XFdtd



315 S. Allen St., Suite 416  |  State College, PA 16801 USA  |  +1.814.861.1299 phone  |    +1.814.861.1308 fax  |  sales@remcom.com  |  www.remcom.com

The interactions with the two interfaces are shown in Figure 9 where two reflection 
terms and one transmission term are defined for signals at both interfaces.  The 
equations for the fields may be written with the understanding that the PEC block will 
completely reflect any incoming signal.
 

The reflection coefficient for the entire geometry is then computed as the ratio of the 
signals b1 and a1.  This may be written as

The reflection computed using this equation is compared to XFdtd simulated results 
for a plasma layer using the same material parameters as the other cases, but here 
with a varying thickness.  The following plasma/PEC configurations were considered 
for analytic and XFdtd analysis.  For the case of a 1 mm thick plasma layer, the layer 
is too thin to cause significant interactions of the forward and backward signals and 
the result is a relatively smooth plot, as shown in Figure 10.  When the thickness of the 
plasma layer is increased to 10 mm, some nulls appear in the reflection from internal 
reflections, as shown in Figure 11.  Finally, at a plasma thickness of 50 mm, there are 
many interactions resulting in a response with many nulls, as shown in Figure 12.  In all 
cases, the XFdtd results are a close match to the analytical solutions.

Figure 10:  Reflection coefficient comparison for a plasma 
layer of 1 mm thickness backed by a PEC block.  The layer 
is thin and results in a slight attenuation in the reflection.

Figure 11:  Reflection coefficient comparison for a 
plasma layer of 10 mm thickness backed by a PEC 
block.  The layer thickness is large enough to cause a 
deep null in the response.
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3.4 Normal Incidence on Stratified Plasma

A final one-dimensional case to consider is normal incidence scattering on stratified 
plasma, as shown in Figure 13 where numerous layers of material are shown with the 
associated fields.  Here the incident field will interact with each layer producing many 
internal reflections in the plasma and generating a complex reflection response.

To compute the analytical solution for the stratified plasma case, consider the equivalent 
circuit diagram shown in Figure 14 where a reflection and transmission coefficient are 
generated at each boundary.  The signals created are represented in Figure 15 where 
each boundary has a reflected “a” component and a transmitted “b” component.  Since 
there is no reflection once the wave penetrates through the last plasma layer (i.e., layer 
n) the cascaded wave-transmission (wave-chain) matrix becomes

Figure 12:  Reflection coefficient comparison for a 
plasma layer of 50 mm thickness backed by a PEC 
block.  Here the thick plasma layer causes a more 
complex response; there is good agreement be-
tween XFdtd and the analytical solution.

Figure 13:  The one-dimensional layout of stratified media with 
multiple plasma layers is shown with the incident, reflected, 
and transmitted fields detailed.

Figure 14:  The equivalent circuit model for the stratified 
layer geometry has reflection and transmission coefficients 
at each interface.

Figure 15:  The traveling wave representation of the 
stratified plasma geometry is shown to define the 
various forward and backward traveling waves at each 
layer interface.
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The reflection and transmission coefficients at each respective dielectric interface are 
as defined previously for a single layer plasma.  The reflection and transmission of the 
overall stratified media configuration is given as

The values in the equation are taken from the signals shown in Figure 15.

For an example simulation, the plasma layer is broken into six layers with constant 
electron densities for each step as shown in Figure 16 (after [7]).  The parameters for 
the Debye-Drude equation are then computed at the center point for each of the six 
layers which are 10 mm thick.  The parameters used are shown in the table of Figure 
17 and the resulting geometry of six plasma layers with an incident plane wave is 
shown in Figure 18.

Figure 16:  For the demonstration, a continuous 
electron density distribution is broken into six 
discrete steps to represent the plasma layers.

Figure 17:  The parameters for each of the six layers of the plasma material for use in the Debye-Drude equation 
are defined for each of the 10mm thick layers.
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The reflection and transmission coefficients are computed and the geometry is 
simulated in XFdtd to produce the plot shown in Figure 19.  It can be seen in Figure 19 
that the response is complex with multiple nulls from interactions at the various material 
boundaries.  The XFdtd and analytical results are very similar across the frequency 
range.

4. Validation of Three-Dimensional Plasma Simulations

In three dimensions, validations to analytical solutions become significantly more 
complex.  Extensive work has been performed to compute the scattering from 
homogeneous spherical objects, generally referred to as the Mie Solution, such as in 
electromagnetic textbooks like [8] and papers such as [9].  For inhomogeneous spheres, 
such as spheres coated by dielectric materials, the computations are more complex 
but have been computed in papers such as [9], [10], and [11].  Bistatic scattering from 
radially inhomogeneous spheres may be computed using approaches such as those 
in [12] or [9].  These methods involve a great deal of advanced mathematics and are 
best understood by reviewing the original source material as the explanations are too 
extensive for this paper.

In this section, Radar Cross Section (RCS) calculations of three-dimensional spheres 
will be compared to simulated results for the cases of a perfectly conducting metal 
sphere, a solid plasma sphere, and a PEC sphere coated with a thin layer of plasma 
material.

Figure 18:  The geometry simulated is shown with an incident 
plane wave on the six-layer structure bounded by periodic 
boundary conditions on the four edges.

Figure 19:  The resulting reflection and trans-
mission coefficients from the six-layer plasma 
structure show a complex reflection profile with 
nulls produced from the wave interactions at the 
various layers.  The results between the analyti-
cal and the XFdtd simulation are very similar.
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4.1 PEC Sphere Scattering – Monostatic

Monostatic RCS from a sphere is typically defined by three different operating regions 
which depend on the electrical size of the sphere.  At frequencies where the sphere 
appears very small compared to the wavelength of the incident field, the RCS response 
increases by the 4th power of ka (where k is the free space wavenumber and a is the 
radius of the sphere) as the wavelength gets smaller; this region is defined as the 
Rayleigh Region where ka < 1 [13].

As the sphere size approaches approximately ten percent of the wavelength of 
the incident field, the RCS response becomes more complex, as there are strong 
contributions from both the specular reflections from the front of the sphere and from 
fields that wrap around (or creep) behind the sphere and are radiated off.  This is 
referred to as the Mie Region where there is a complex ringing response in the RCS as 
the contributions from the creeping waves add both constructively and destructively.

Finally, when the sphere becomes very large compared to the incident wavelength, the 
response flattens out to a constant value and is said to have entered the Optical Region.  
The RCS response as a function of the normalized sphere circumference divided by 
the wavelength is shown in Figure 20, where the three regions are labeled and results 
from the analytical solutions and XFdtd are plotted.  The analytical results are computed 
using (equation 7-12 from [9])

The RCS is computed as

where the three terms are defined as

Figure 20:  The normalized monostatic RCS of 
a perfectly conducting sphere is shown on a 
logarithmic scale with the three primary regions 
of response detailed.  The XFdtd simulations are 
a very good match to the analytic results.
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4.2 Plasma Sphere Scattering – Monostatic

Replacing the PEC sphere with a dielectric sphere introduces characteristics to the RCS 
response since the incident field will be able to penetrate the sphere and possibly create 
reflecting fields that will add to the complexity of the response.  As is demonstrated in 
[9], a lossless dielectric can have a very complex response due to resonances in the 
sphere which are undampened.  Adding loss to the dielectric reduces the complex 
interactions, but the RCS response will still be more complex than that of the PEC 
sphere.

The analytical response is computed using equation 7-15 from [9] which defines the 
vector scattering length as

The RCS is computed from the vector scattering length in a manner like that used in the PEC 
sphere case from section 4.1.

For this demonstration, the sphere will have a radius of 10 mm and be assigned the material 
properties of the plasma used previously for the one-dimensional cases (that from [5]).  The 
analytical and XFdtd simulated results for the monostatic RCS are plotted in Figure 21.  Note 
that the XFdtd and analytical results are identical over the frequency range of 0 to 60 GHz.

Figure 21:  Monostatic RCS result comparing the analytical solution 
to XFdtd for a 10mm radius plasma sphere.
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4.3 Plasma Coated PEC Sphere – Monostatic

The addition of a plasma coating on a PEC sphere modifies the response in several 
ways, including changing the medium of the creeping waves wrapping around the 
sphere and the possibility of internally-reflected (internal resonances) waves inside 
the plasma layer.  The analytical solution for the RCS from a dielectrically coated 
conducting sphere used here is from [11].  The solution in [11] describes the structure 
as a conducting sphere with radius “b” and a lossy layer with thickness “d”, resulting in 
a total radius or “a” where a=b+d.  As such, the scattering cross section is then given in 
[11] as

where the various terms are defined as

and 
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For a test problem, consider a PEC sphere with radius 100 mm covered by a plasma 
layer of 10 mm thickness, as shown in Figure 22.  The plasma layer will be defined 
using the parameters from [5].  The monostatic RCS over a frequency range of 0 to 
20 GHz is plotted in Figure 23 and shows excellent agreement between XFdtd and 
the analytical solution at frequencies below 12 GHz and has good but slightly varying 
results in the optical range above 12 GHz.

4.4 Plasma Coated PEC Sphere – Bistatic

The previous examples showed monostatic RCS results versus frequency, but another result 
of interest is the bistatic scattering at a single frequency.  First consider a plasma coated PEC 
sphere like that used in section 4.3 with an inner radius of “b”, an outer radius of “a”, and 
a plasma thickness of “d”.  The plasma coated PEC sphere bistatic RCS formulation employs 
the coefficients of the TE and TM modes found in section 4.3 for the monostatic RCS analytic 
formulation and radially independent vector spherical harmonic functions.  The TE and TM 
coefficients of coated metal spheres can be found in [11] while the spherical harmonics details 
are provided in [12].

The TE and TM mode coefficients for scattering from a plasma coated PEC sphere were 
described in section 4.3 at the values an

TE and bn
TM.  For the spherical harmonics, their 

formulation assumes the incident plane wave is X polarized and is traveling from the -Z 
direction.  They can be written as

Figure 22:  Cut-away view of the PEC sphere of radius 100 
mm coated by a 10 mm thick layer of plasma material.

Figure 23:  Monostatic RCS of 100 mm radius PEC 
sphere coated with 10 mm thick layer of plasma.
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The E- Plane bistatic RCS is given by the following equation

The H-Plane bistatic RCS is given by the following equation

Using these equations on the test geometry of Figure 22 of a 100 mm radius PEC 
sphere with a 10 mm plasma coating (plasma properties as described in [5]), the bistatic 
RCS in the E- and H-Planes may be computed and compared to results from XFdtd.  
The bistatic results at frequencies of 2, 3, 4, and 5 GHz are shown in Figure 24 through 
Figure 27.  The XFdtd results show excellent agreement with the Analytic solution for all 
frequencies.

Figure 24:  Bistatic RCS results for the plasma coated sphere at 2 GHz in the E-Plane (left) and H-Plane 
(right).  The XFdtd results show excellent agreement with the Analytic solution.

Figure 25:  Bistatic RCS results for the plasma coated sphere at 3 GHz in the E-Plane (left) and H-Plane 
(right).
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4.5 PEC Sphere – Bistatic RCS

The bistatic scattering from a PEC sphere may be computed analytically using the same 
equations as in section 4.4 and simply setting the dielectric constant of the plasma layer 
to free space.  Repeating the simulations for the plasma-coated sphere for only the 
PEC core gives results as shown in Figure 28 at 2 GHz, where the XFdtd results are a 
perfect match to the Analytic solution.

Figure 26:  Bistatic RCS results for the plasma coated sphere at 4 GHz in the E-Plane (left) and H-Plane (right).

Figure 27:  Bistatic RCS results for the plasma coated sphere at 5 GHz in the E-Plane (left) and H-Plane (right).
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5. Conclusion

Analytic solutions to one-dimensional interactions of incident waves on various planar 
surfaces were developed and compared to XFdtd with excellent agreement found.  
Examples of plasma half-planes, finite thickness plasma layers, plasma-coated PEC 
half-planes, and stratified plasma layers were examined.  In three dimensions, solutions 
were derived for PEC spheres, plasma spheres, and plasma coated PEC spheres.  Both 
monostatic and bistatic RCS results were shown with good agreement between the 
analytic and XFdtd computational solutions.  These results give confidence that XFdtd 
may be used for more complex structures for which analytic solutions are not readily 
available.

Request a free trial...

Subscribe to our Newsletter...

References

[1] R. Luebbers, F. P. Hunsberger, K. S. Kunz, R. B. Standler and M. Schneider, “A
frequency-dependent finite-difference time-domain formulation for dispersive materials,”
in IEEE Transactions on Electromagnetic Compatibility, vol. 32, no. 3, pp. 222-227, Aug.
1990, doi: 10.1109/15.57116.

[2] R. J. Luebbers, F. Hunsberger and K. S. Kunz, “A frequency-dependent finite-
difference time-domain formulation for transient propagation in plasma,” in IEEE
Transactions on Antennas and Propagation, vol. 39, no. 1, pp. 29-34, Jan. 1991, doi:
10.1109/8.64431.

Figure 28:  Bistatic RCS results for a 100 mm radius PEC sphere in the E-Plane (left) and H-Plane (right).

Technical Report: Simulation of Plasma Materials in XFdtd

https://www.remcom.com/em-simulation-software-free-trial
https://www.remcom.com/resources/newsletter


315 S. Allen St., Suite 416  |  State College, PA 16801 USA  |  +1.814.861.1299 phone  |    +1.814.861.1308 fax  |  sales@remcom.com  |  www.remcom.com

Remcom, Inc.
315 S. Allen St., Suite 416

State College, PA 16801 USA

+1.888.7. REMCOM  (US/CAN)
+1.814.861.1299  phone
+1.814.861.1308  fax

sales@remcom.com

Visit www.remcom.com for more information ©
 2019 R

em
com

 Inc. 
All rights reserved.

Remcom, Inc.
315 S. Allen St., Suite 416

State College, PA 16801 USA

+1.888.7. REMCOM  (US/CAN)
+1.814.861.1299  phone
+1.814.861.1308  fax

sales@remcom.com

Visit www.remcom.com for more information ©
 2019 R

em
com

 Inc. 
All rights reserved.

Remcom, Inc.
315 S. Allen St., Suite 416

State College, PA 16801 USA

+1.888.7. REMCOM  (US/CAN)
+1.814.861.1299  phone
+1.814.861.1308  fax

sales@remcom.com

Visit www.remcom.com for more information ©
 2024 R

em
com

 Inc. 
All rights reserved.

[3] R. J. Luebbers and F. Hunsberger, “FDTD for Nth-order dispersive media,” in IEEE 
Transactions on Antennas and Propagation, vol. 40, no. 11, pp. 1297-1301, Nov. 1992, 
doi: 10.1109/8.202707.

[4] F. Hunsberger, R. Luebbers and K. Kunz, “Finite-difference time-domain analysis 
of gyrotropic media. I. Magnetized plasma,” in IEEE Transactions on Antennas and 
Propagation, vol. 40, no. 12, pp. 1489-1495, Dec. 1992, doi: 10.1109/8.204739.

[5] R. Luebbers, D. Steich and K. Kunz, “FDTD calculation of scattering from frequency-
dependent materials,” in IEEE Transactions on Antennas and Propagation, vol. 41, no. 
9, pp. 1249-1257, Sept. 1993, doi: 10.1109/8.247751.

[6] Collin, R. E., Field Theory of Electromagnetic Waves, Wiley-IEEE Press, 1991.

[7] Z. Han, J. Ding, P. Chen, Z. Zhang and C. Guo, “FDTD analysis of three-dimensional 
target covered with inhomogeneous unmagnetized plasma,” 2010 International 
Conference on Microwave and Millimeter Wave Technology, Chengdu, China, 2010, pp. 
125-128, doi: 10.1109/ICMMT.2010.5525270.

[8] Stratton, J. A., Electromagnetic Theory. McGraw Hill, 1941.

[9] Brock, Billy C. Bistatic and Monostatic Radar Cross Section of Radially 
Inhomogeneous Spheres. United States: N. p., 2016. Web. doi:10.2172/1618259.

[10] V. H. Weston and R. Hemenger, “High frequency scattering from a coated sphere,” 
J. Res. Nut. Bur. Stand., vol. 66D, pp. 613-619, 1962.

[11] D. J. Taylor, A. K. Jordan, P. J. Moser and H. Uberall, “Complex resonances of 
conducting spheres with lossy coatings,” in IEEE Transactions on Antennas and 
Propagation, vol. 38, no. 2, pp. 236-240, Feb. 1990, doi: 10.1109/8.45126.

[12] J. R. Wait and C. M. Jackson, “Calculations of the bistatic scattering cross section 
of a sphere with an impedance boundary condition,” Radio Sci. J, Res. Nut. Bur. Stand./
USNC-URSI, vol. 69D, pp. 299-314, Feb. 1965

[13] Skolnik, Merrill, Radar Handbook Second Edition. McGraw Hill, 1990.

Technical Report: Simulation of Plasma Materials in XFdtd




