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1. Introduction

Plasmas are comprised of a medium of charged particles, ions, and electrons and are 
one of the most common forms of matter in the universe.  Although plasmas generally 
exist in stars and clouds in space, they can be created by heating or applying a strong 
electromagnetic	field	to	a	neutral	gas.		High	heat	or	pressure	can	strip	electrons	from	
atoms, creating positively charged ions and free electrons in an electrically-conducting 
medium, such as a plasma.

Of current interest is the formation and behavior of plasmas created by hypersonic 
vehicles passing through the atmosphere.  These vehicles leave behind a plasma trail 
which can interfere with electromagnetic signals due to the conducting nature of the 
material.  This presents interesting challenges both for radar detection of these vehicles 
and for radio communication and guidance through the plasma layer.

This	paper	discusses	the	finite-difference,	time-domain	(FDTD)	method	to	simulate	
the behavior of plasma materials.  There has been extensive work in this area in the 
past using FDTD, but most relevant to this application are approaches developed by 
Luebbers et. al. for the simulation of frequency-dependent materials in general [1], 
and	plasmas	specifically	[2].		Further	work	on	higher	order	dispersive	materials	[3]	and	
magnetized plasma [4] further validated the approach.  The technique was applied to 
three-dimensional, full-wave scattering from frequency-dependent materials in the 1993 
Schelkunoff	Best	Paper	Award	publication	in	the	IEEE	Transactions	on	Antennas	and	
Propagation	[5].		These	developments	and	future	refinements	are	incorporated	into	
Remcom’s XFdtd® 3D Electromagnetic Simulation solver, which will be used to provide 
some of the results in this paper.

The simulation of plasmas will be discussed here starting with an explanation of the 
frequency-dependent model used, followed by validation of the method in one- and 
three-dimensions.  In three dimensions, both monostatic and bistatic radar cross section 
results will be presented for validation.

2. The Debye-Drude Material Model Applied to Lossy Plasmas

The Debye-Drude material model describes a frequency varying relative permittivity 
function	that	includes	loss	and	is	a	good	fit	for	the	complex	permittivity	of	a	lossy	
plasma.		The	Debye-Drude	equation	with	one	first	order	pole	is
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where	ε∞	is	the	infinite	frequency	relative	permittivity,	εs is the static frequency relative 
permittivity,	τ0	is	the	relaxation	time	(in	seconds),	and	σ	is	the	electrical	conductivity	
(Siemens/meter).

In comparison, the well-known frequency dependent relative complex dielectric constant 
for plasma is

where ωp	is	the	plasma	frequency	(Radians),	and	ƒc is the collision frequency of the 
plasma	(Hertz).		This	expression	can	be	rearranged	to	put	it	in	the	same	form	as	the	
Debye-Drude equation as

Comparing the two expressions results in the following equations:

The conductivity term is then

Consider the plasma discussed in [5] which had parameters of Plasma Frequency 
= 28.7 GHz, Collision Frequency = 20 GHz, the Debye-Drude parameters would be 
Infinite	Frequency	relative	permittivity	=	1,	Static	Frequency	relative	permittivity	=	
-80.295, relaxation time = 5x10-11	sec,	and	conductivity	=	14.397	S/m.		The	complex	
permittivity of this model may be plotted as real and imaginary parts shown in Figure 1.  
This plasma model and parameters will be used for future examples in this paper.
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3. Validations for One-Dimensional Cases
 
The plasma model developed for use in XFdtd in the previous section will be validated 
for a series of one-dimensional cases by comparison to analytical solutions.

3.1 Normal Incidence on Plasma Half-Space 

First, consider a plasma half-space with normal incidence scattering as shown in Figure 
2.		This	interface	is	illuminated	by	a	normal	incident	(to	the	interface)	perpendicularly	
polarized	plane	wave	traveling	in	the	+z	direction.		The	incident	electric	field,	Ey,	is	
parallel to the interface or perpendicular to the plane shown in Figure 2.  If the following 
conditions hold true

Figure 1:  Real and Imaginary parts of the permittivity of the 
example plasma material defined in [5].

Figure 2:  One dimensional geometry of plasma half-space 
with incident, reflected, and transmitted fields shown.
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then	the	reflection	and	transmission	coefficients	reduce	to

At	the	air-plasma	interface	(z	=0)	the	incident	and	reflected	electric	fields	are

Therefore,	the	ratio	of	the	reflected	and	incident	fields	is

This value is often described in decibels as the return loss by taking the logarithm of the 
ratio

The	transmission	(as	referenced	to	the	incident	field)	into	the	plasma	at	a	specific	
distance from the interface can be found similarly with a ratio of the incident and 
transmitted	fields.
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The	incident	field	(at	the	air-plasma	interface,	i.e.	z	=	0)	and	the	transmitted	field	into	the	
plasma	(at	some	distance,	z)	are

Therefore,	the	ratio	of	the	transmitted	and	incident	fields	is

At z = 0.1 m

The	following	equation	is	the	expression	of	field	transmission	in	dB	into	the	plasma	at	a	
distance of 0.1 m

This one-dimensional propagation case was replicated in XFdtd by creating a 
rectangular	block	of	the	plasma	material	with	periodic	boundaries	on	the	(+/-)	x	and	
y directions and an absorbing boundary on the +z side.  The plasma material is 
defined	using	the	Debye-Drude	description	mentioned	previously	from	[5].		A	plane	
wave excitation with a broadband pulse is applied from the -z direction.  The resulting 
reflection	coefficient	and	transmission	at	a	point	0.1	meters	into	the	plasma	are	plotted	
in Figure 3 where the analytical solution is compared to those from XFdtd for the 
reflection.		For	the	transmission,	it	can	be	seen	that	below	-120	dB	the	computational	
solution is limited by the very low signal level and numerical noise.
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3.2 Normal Incidence on Plasma of Finite Thickness

In	this	section,	consider	the	reflection	and	transmission	of	a	plane	wave	which	is	
normally	incident	on	a	sheet	of	plasma	of	finite	thickness	such	as	shown	in	Figure	4.		
The	analytic	formulation	employs	the	wave-transmission	(wave-chain)	matrix	approach	
as outlined in Field Theory of Guided Waves by R. E. Collin [6].  This approach assumes 
only forward and backward TEM traveling waves and that the sections between the 
discontinuities	(dielectric	interfaces)	are	sufficiently	long	so	that	there	is	no	interaction	
between evanescent waves generated at one interface and the adjacent interfaces.

Figure 3:  Reflection and Transmission at 0.1 m distance from the plasma half-space 
interface of Figure2, computed analytically and simulated with XFdtd.

Figure 4:  One Dimensional geometry of finite 
thickness plasma in free space with incident, 
reflected, and transmitted fields.
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At	each	interface	there	exists	a	reflection	and	transmission	coefficient	as	shown	in	
Figure 5.  Each interface has forward and backward propagating signals which are 
detailed in Figure 6.  The signals a1 and b1	at	the	left	of	the	first	interface	may	be	
described by the following expressions.

The	total	or	combined	reflection	coefficient	for	net	impact	of	interactions	with	both	
interfaces	of	the	plasma	layer	at	the	first	air-plasma	interface	(Z=0	in	Figure	4)	can	be	
found using the above matrix equation and written as the ratio of the forward traveling 
wave, a1	to	the	reflected	wave,	b1.

Likewise	for	the	transmission	coefficient	relating	the	incident	right	traveling	wave	to	the	
right traveling wave in the free space region on the back side of the plasma sheet, the 
ratio of a3 to a1 may be written as

Figure 5:  Diagram of the Equivalent Circuit for Plane 
Wave Scattering from a sheet of dielectric (thickness d) 
depicting the associated reflection and transmission 
coefficients.

Figure 6:  Diagram of the equivalent circuit for plane 
wave scattering from a sheet of dielectric (thickness d) 
depicting the traveling waves in each region.
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Using the same plasma material from the half-space validation, the reflection and transmission 
coefficients are computed analytically and simulated in XFdtd and are shown in Figure 7 for a 
case where the plasma layer is 1 mm thick.  Very good agreement between the XFdtd method 
and the analytical solutions is found.

3.3 Normal Incidence on a Finite Thickness Plasma Sheet over PEC Half-Space

As the next one-dimensional validation, consider a thin layer of plasma material backed by a 
perfectly-conducting (PEC) half-space as shown in Figure 8.  Here there will be an incident field 
from the -Z direction, a transmitted field into the plasma layer, a reflected field from the free 
space-plasma interface, and a second reflected field from the plasma-PEC interface.

Figure 7:  The reflection and transmission coefficients for a 1 mm 
thick plasma layer computed analytically and with XFdtd.

Figure 8:  One-dimensional geometry of a thin plasma 
layer backed by a conducting half-space with incident 
and reflected fields shown.

Figure 9:  Interactions with the two material interfaces are 
shown with definitions of the various coefficients and signals.
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The	interactions	with	the	two	interfaces	are	shown	in	Figure	9	where	two	reflection	
terms	and	one	transmission	term	are	defined	for	signals	at	both	interfaces.		The	
equations	for	the	fields	may	be	written	with	the	understanding	that	the	PEC	block	will	
completely	reflect	any	incoming	signal.
 

The	reflection	coefficient	for	the	entire	geometry	is	then	computed	as	the	ratio	of	the	
signals b1 and a1.  This may be written as

The	reflection	computed	using	this	equation	is	compared	to	XFdtd	simulated	results	
for a plasma layer using the same material parameters as the other cases, but here 
with	a	varying	thickness.		The	following	plasma/PEC	configurations	were	considered	
for analytic and XFdtd analysis.  For the case of a 1 mm thick plasma layer, the layer 
is	too	thin	to	cause	significant	interactions	of	the	forward	and	backward	signals	and	
the result is a relatively smooth plot, as shown in Figure 10.  When the thickness of the 
plasma	layer	is	increased	to	10	mm,	some	nulls	appear	in	the	reflection	from	internal	
reflections,	as	shown	in	Figure	11.		Finally,	at	a	plasma	thickness	of	50	mm,	there	are	
many interactions resulting in a response with many nulls, as shown in Figure 12.  In all 
cases, the XFdtd results are a close match to the analytical solutions.

Figure 10:  Reflection coefficient comparison for a plasma 
layer of 1 mm thickness backed by a PEC block.  The layer 
is thin and results in a slight attenuation in the reflection.

Figure 11:  Reflection coefficient comparison for a 
plasma layer of 10 mm thickness backed by a PEC 
block.  The layer thickness is large enough to cause a 
deep null in the response.
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3.4 Normal Incidence on Stratified Plasma

A	final	one-dimensional	case	to	consider	is	normal	incidence	scattering	on	stratified	
plasma, as shown in Figure 13 where numerous layers of material are shown with the 
associated	fields.		Here	the	incident	field	will	interact	with	each	layer	producing	many	
internal	reflections	in	the	plasma	and	generating	a	complex	reflection	response.

To	compute	the	analytical	solution	for	the	stratified	plasma	case,	consider	the	equivalent	
circuit	diagram	shown	in	Figure	14	where	a	reflection	and	transmission	coefficient	are	
generated at each boundary.  The signals created are represented in Figure 15 where 
each	boundary	has	a	reflected	“a”	component	and	a	transmitted	“b”	component.		Since	
there	is	no	reflection	once	the	wave	penetrates	through	the	last	plasma	layer	(i.e.,	layer	
n)	the	cascaded	wave-transmission	(wave-chain)	matrix	becomes

Figure 12:  Reflection coefficient comparison for a 
plasma layer of 50 mm thickness backed by a PEC 
block.  Here the thick plasma layer causes a more 
complex response; there is good agreement be-
tween XFdtd and the analytical solution.

Figure 13:  The one-dimensional layout of stratified media with 
multiple plasma layers is shown with the incident, reflected, 
and transmitted fields detailed.

Figure 14:  The equivalent circuit model for the stratified 
layer geometry has reflection and transmission coefficients 
at each interface.

Figure 15:  The traveling wave representation of the 
stratified plasma geometry is shown to define the 
various forward and backward traveling waves at each 
layer interface.
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The	reflection	and	transmission	coefficients	at	each	respective	dielectric	interface	are	
as	defined	previously	for	a	single	layer	plasma.		The	reflection	and	transmission	of	the	
overall	stratified	media	configuration	is	given	as

The values in the equation are taken from the signals shown in Figure 15.

For an example simulation, the plasma layer is broken into six layers with constant 
electron densities for each step as shown in Figure 16 (after [7]).  The parameters for 
the Debye-Drude equation are then computed at the center point for each of the six 
layers which are 10 mm thick.  The parameters used are shown in the table of Figure 
17 and the resulting geometry of six plasma layers with an incident plane wave is 
shown in Figure 18.

Figure 16:  For the demonstration, a continuous 
electron density distribution is broken into six 
discrete steps to represent the plasma layers.

Figure 17:  The parameters for each of the six layers of the plasma material for use in the Debye-Drude equation 
are defined for each of the 10mm thick layers.
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The	reflection	and	transmission	coefficients	are	computed	and	the	geometry	is	
simulated in XFdtd to produce the plot shown in Figure 19.  It can be seen in Figure 19 
that the response is complex with multiple nulls from interactions at the various material 
boundaries.  The XFdtd and analytical results are very similar across the frequency 
range.

4. Validation of Three-Dimensional Plasma Simulations

In	three	dimensions,	validations	to	analytical	solutions	become	significantly	more	
complex.  Extensive work has been performed to compute the scattering from 
homogeneous spherical objects, generally referred to as the Mie Solution, such as in 
electromagnetic textbooks like [8] and papers such as [9].  For inhomogeneous spheres, 
such as spheres coated by dielectric materials, the computations are more complex 
but have been computed in papers such as [9], [10], and [11].  Bistatic scattering from 
radially inhomogeneous spheres may be computed using approaches such as those 
in [12] or [9].  These methods involve a great deal of advanced mathematics and are 
best understood by reviewing the original source material as the explanations are too 
extensive for this paper.

In	this	section,	Radar	Cross	Section	(RCS)	calculations	of	three-dimensional	spheres	
will be compared to simulated results for the cases of a perfectly conducting metal 
sphere, a solid plasma sphere, and a PEC sphere coated with a thin layer of plasma 
material.

Figure 18:  The geometry simulated is shown with an incident 
plane wave on the six-layer structure bounded by periodic 
boundary conditions on the four edges.

Figure 19:  The resulting reflection and trans-
mission coefficients from the six-layer plasma 
structure show a complex reflection profile with 
nulls produced from the wave interactions at the 
various layers.  The results between the analyti-
cal and the XFdtd simulation are very similar.
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4.1 PEC Sphere Scattering – Monostatic

Monostatic	RCS	from	a	sphere	is	typically	defined	by	three	different	operating	regions	
which depend on the electrical size of the sphere.  At frequencies where the sphere 
appears	very	small	compared	to	the	wavelength	of	the	incident	field,	the	RCS	response	
increases by the 4th	power	of	ka	(where	k	is	the	free	space	wavenumber	and	a	is	the	
radius	of	the	sphere)	as	the	wavelength	gets	smaller;	this	region	is	defined	as	the	
Rayleigh Region where ka < 1 [13].

As the sphere size approaches approximately ten percent of the wavelength of 
the	incident	field,	the	RCS	response	becomes	more	complex,	as	there	are	strong	
contributions	from	both	the	specular	reflections	from	the	front	of	the	sphere	and	from	
fields	that	wrap	around	(or	creep)	behind	the	sphere	and	are	radiated	off.		This	is	
referred to as the Mie Region where there is a complex ringing response in the RCS as 
the contributions from the creeping waves add both constructively and destructively.

Finally, when the sphere becomes very large compared to the incident wavelength, the 
response	flattens	out	to	a	constant	value	and	is	said	to	have	entered	the	Optical	Region.		
The RCS response as a function of the normalized sphere circumference divided by 
the wavelength is shown in Figure 20, where the three regions are labeled and results 
from the analytical solutions and XFdtd are plotted.  The analytical results are computed 
using	(equation	7-12	from	[9])

The RCS is computed as

where	the	three	terms	are	defined	as

Figure 20:  The normalized monostatic RCS of 
a perfectly conducting sphere is shown on a 
logarithmic scale with the three primary regions 
of response detailed.  The XFdtd simulations are 
a very good match to the analytic results.
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4.2 Plasma Sphere Scattering – Monostatic

Replacing the PEC sphere with a dielectric sphere introduces characteristics to the RCS 
response	since	the	incident	field	will	be	able	to	penetrate	the	sphere	and	possibly	create	
reflecting	fields	that	will	add	to	the	complexity	of	the	response.		As	is	demonstrated	in	
[9], a lossless dielectric can have a very complex response due to resonances in the 
sphere which are undampened.  Adding loss to the dielectric reduces the complex 
interactions, but the RCS response will still be more complex than that of the PEC 
sphere.

The	analytical	response	is	computed	using	equation	7-15	from	[9]	which	defines	the	
vector scattering length as

The RCS is computed from the vector scattering length in a manner like that used in the PEC 
sphere case from section 4.1.

For this demonstration, the sphere will have a radius of 10 mm and be assigned the material 
properties of the plasma used previously for the one-dimensional cases (that from [5]).  The 
analytical and XFdtd simulated results for the monostatic RCS are plotted in Figure 21.  Note 
that the XFdtd and analytical results are identical over the frequency range of 0 to 60 GHz.

Figure 21:  Monostatic RCS result comparing the analytical solution 
to XFdtd for a 10mm radius plasma sphere.
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4.3 Plasma Coated PEC Sphere – Monostatic

The	addition	of	a	plasma	coating	on	a	PEC	sphere	modifies	the	response	in	several	
ways, including changing the medium of the creeping waves wrapping around the 
sphere	and	the	possibility	of	internally-reflected	(internal	resonances)	waves	inside	
the plasma layer.  The analytical solution for the RCS from a dielectrically coated 
conducting sphere used here is from [11].  The solution in [11] describes the structure 
as	a	conducting	sphere	with	radius	“b”	and	a	lossy	layer	with	thickness	“d”,	resulting	in	
a	total	radius	or	“a”	where	a=b+d.		As	such,	the	scattering	cross	section	is	then	given	in	
[11] as

where the various terms are defined as

and 
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For a test problem, consider a PEC sphere with radius 100 mm covered by a plasma 
layer	of	10	mm	thickness,	as	shown	in	Figure	22.		The	plasma	layer	will	be	defined	
using the parameters from [5].  The monostatic RCS over a frequency range of 0 to 
20 GHz is plotted in Figure 23 and shows excellent agreement between XFdtd and 
the analytical solution at frequencies below 12 GHz and has good but slightly varying 
results in the optical range above 12 GHz.

4.4 Plasma Coated PEC Sphere – Bistatic

The previous examples showed monostatic RCS results versus frequency, but another result 
of interest is the bistatic scattering at a single frequency.  First consider a plasma coated PEC 
sphere like that used in section 4.3 with an inner radius of “b”, an outer radius of “a”, and 
a plasma thickness of “d”.  The plasma coated PEC sphere bistatic RCS formulation employs 
the coefficients of the TE and TM modes found in section 4.3 for the monostatic RCS analytic 
formulation and radially independent vector spherical harmonic functions.  The TE and TM 
coefficients of coated metal spheres can be found in [11] while the spherical harmonics details 
are provided in [12].

The TE and TM mode coefficients for scattering from a plasma coated PEC sphere were 
described in section 4.3 at the values an

TE and bn
TM.  For the spherical harmonics, their 

formulation assumes the incident plane wave is X polarized and is traveling from the -Z 
direction.  They can be written as

Figure 22:  Cut-away view of the PEC sphere of radius 100 
mm coated by a 10 mm thick layer of plasma material.

Figure 23:  Monostatic RCS of 100 mm radius PEC 
sphere coated with 10 mm thick layer of plasma.
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The E- Plane bistatic RCS is given by the following equation

The H-Plane bistatic RCS is given by the following equation

Using these equations on the test geometry of Figure 22 of a 100 mm radius PEC 
sphere	with	a	10	mm	plasma	coating	(plasma	properties	as	described	in	[5]),	the	bistatic	
RCS in the E- and H-Planes may be computed and compared to results from XFdtd.  
The bistatic results at frequencies of 2, 3, 4, and 5 GHz are shown in Figure 24 through 
Figure 27.  The XFdtd results show excellent agreement with the Analytic solution for all 
frequencies.

Figure 24:  Bistatic RCS results for the plasma coated sphere at 2 GHz in the E-Plane (left) and H-Plane 
(right).  The XFdtd results show excellent agreement with the Analytic solution.

Figure 25:  Bistatic RCS results for the plasma coated sphere at 3 GHz in the E-Plane (left) and H-Plane 
(right).
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4.5 PEC Sphere – Bistatic RCS

The bistatic scattering from a PEC sphere may be computed analytically using the same 
equations as in section 4.4 and simply setting the dielectric constant of the plasma layer 
to free space.  Repeating the simulations for the plasma-coated sphere for only the 
PEC core gives results as shown in Figure 28 at 2 GHz, where the XFdtd results are a 
perfect match to the Analytic solution.

Figure 26:  Bistatic RCS results for the plasma coated sphere at 4 GHz in the E-Plane (left) and H-Plane (right).

Figure 27:  Bistatic RCS results for the plasma coated sphere at 5 GHz in the E-Plane (left) and H-Plane (right).
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5. Conclusion

Analytic solutions to one-dimensional interactions of incident waves on various planar 
surfaces were developed and compared to XFdtd with excellent agreement found.  
Examples	of	plasma	half-planes,	finite	thickness	plasma	layers,	plasma-coated	PEC	
half-planes,	and	stratified	plasma	layers	were	examined.		In	three	dimensions,	solutions	
were derived for PEC spheres, plasma spheres, and plasma coated PEC spheres.  Both 
monostatic and bistatic RCS results were shown with good agreement between the 
analytic	and	XFdtd	computational	solutions.		These	results	give	confidence	that	XFdtd	
may be used for more complex structures for which analytic solutions are not readily 
available.
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