Double-Ringed Frequency Selective Surface
Designing physical structures that exhibit a zero degree phase shift in the reflection coefficient presents a particularly interesting challenge. Although in theory, this is the behavior of a Perfect Magnetic Conductor (PMC), PMC materials do not exist in nature. If designed correctly, these metamaterials promise to improve antenna performance while decreasing overall size. Dr. Makino of Kanazawa Institute of Technology has made progress in this area by using a double-ringed periodic structure. The structure of Figure 1, which exhibits the reflection phase of PMC at 9.5 GHz, was originally designed, fabricated, and tested in his laboratory. Later, it was simulated in XF and good agreement was found.
For the XFdtd simulations, only a single double-ring unit was modeled in each case, as shown in Figures 3 and 4. Periodic boundary conditions were applied to the units during the calculation to better represent the fabricated structure while reducing memory and run time requirements. A linearly polarized plane wave was incident normally to the periodic structure to match the measurement conditions and scattered fields were collected.
Transmission coefficients were computed for Case I and compared against measurements as shown in Figures 5 and 6.
The reflection coefficient phase was computed for Case II and compared against the fabricated, metal backed FSS as shown in Figure 7. This figure shows that the structure is well designed and has a zero degree reflection phase, like PMC, at 9.5 GHz.